Search results for "wharton's jelly"

showing 10 items of 38 documents

Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review

2016

In recent years, umbilical cord blood (UCB) has been widely used as an alternative source to bone marrow (BM) for transplantation of hematopoietic stem and progenitor cells (HSPCs) in a variety of hematological and non-hematological disorders. Nevertheless, the insufficient number of UCB-HSPCs for graft represents a major challenge. HSPCs ex vivo expansion prior to transplantation is a valid strategy to overcome this limit. Several attempts to optimize the expansion conditions have been reported, including the use of mesenchymal stromal cells (MSCs) as feeder layer. Wharton's Jelly (WJ), the main component of umbilical cord (UC) matrix, is especially rich in MSCs, which are considered ideal…

0301 basic medicineFeeder CellSettore BIO/17 - IstologiaCancer ResearchStromal cellBone marrow transplantationCell Culture TechniquesEx vivo expansionFeeder layerBiology03 medical and health sciencesFeeder LayerWharton's jellymedicineHumansWharton JellyProgenitor cellCoculture TechniqueWharton’s jelly mesenchymal stromal cellCell ProliferationUmbilical cord blood transplantationMesenchymal Stromal CellMesenchymal stem cellHematopoietic Stem Cell TransplantationFeeder CellsMesenchymal Stem CellsCell DifferentiationHematopoietic Stem CellCell BiologyHematopoietic Stem CellsCoculture TechniquesCell biologyTransplantation030104 developmental biologymedicine.anatomical_structureImmunologyHematopoietic and progenitor stem cellBone marrowStem cellCell Culture TechniqueHuman
researchProduct

Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro

2019

Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of i…

0301 basic medicineSettore BIO/17 - IstologiaB7 AntigensT cellIn Vitro TechniquesBiologyLymphocyte ActivationRegenerative medicineCell therapyUmbilical CordImmune toleranceImmunomodulation03 medical and health sciences0302 clinical medicineWharton's jellymedicineHumansWharton JellyCD276Cells CulturedCell ProliferationStem cellMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsHuman umbilical cordCell biologyTransplantationTolerance induction030104 developmental biologymedicine.anatomical_structureB7-H3030220 oncology & carcinogenesisLymphocyte inhibitionRegenerative medicineCytokinesWharton’s jelly mesenchymal stromal cellsStem cell
researchProduct

Mesenchymal Stromal Cells From Wharton's Jelly (WJ-MSCs)

2018

Abstract Among the potential sources of cells with attractive features for regenerative medicine, perinatal tissues have gained much attention in recent years. The umbilical cord (UC) is a fundamental part of placenta, the organ providing feto–maternal interface during pregnancy. The mature UC is constituted by three vessels, one vein, and two arteries, which are comprised into a meshwork formed by a mature mucous connective tissue, named Wharton's jelly (WJ). Recent data from research groups worldwide highlighted that WJ stromal cells possess unique features both in terms of differentiative ability and immunomodulation. These features are desirable for cellular therapy applications, thereb…

0301 basic medicineStromal cellMesenchymal stem cellBiologyUmbilical cordRegenerative medicineCell biologyCell therapy03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurePlacentaWharton's jellyMucous Connective Tissuemedicine030217 neurology & neurosurgery
researchProduct

Recent patents and advances in hepatocyte-like cells differentiation by mesenchymal stem cells

2013

Chronic liver diseases constitute one of the main causes of death in western countries. Orthotopic liver transplantation still remains the final therapeutic approach to these diseases, but alternative therapeutic strategies are actively researched. Hepatocyte transplantation is considered a promising approach, even if this technique presents many limitations. These factors boosted the research for alternative cell sources to derive functional hepatocytes. In the last years, research on basic biology and differentiative ability of adult, embryonic and perinatal stem cells has constantly increased. The term "perinatal" indicates stem cell populations derived from foetal sources such as placen…

Amniotic fluidAmniotic fluidHepatocyte differentiation patentCellular therapyImmune modulationPlacenta cord bankingBiologyCell therapyDevelopmental NeuroscienceWharton's jellymedicineAmnionPlacental stem cellMesenchymal stem cellAmnionSettore BIO/16 - Anatomia UmanaWharton's jellyMesenchymal stem cellCell BiologyLiver regenerationCell biologymedicine.anatomical_structureLiver regenerationStem cellLiver diseaseDevelopmental Biology
researchProduct

Wharton’s Jelly Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes

2014

Type 1 diabetes is an autoimmune disease caused by the destruction of endocrine pancreas β cells by T lymphocytes, for which genetic and environmental risk factors have been proposed. Patients require daily infusions of recombinant insulin to overcome the reduced production by their own cells, but there is an increasing demand for a permanent and efficient supplementation which could better modulate the need for the hormone during the normal activities. For this reason, transplant-based therapeutic models have been proposed such as whole organ transplantation and Langerhans islets transplantation. These techniques are limited by many factors such as the lack of donors, the risks linked to t…

Cell therapyAmniotic epithelial cellsWharton's jellyMesenchymal stem cellStem cell theory of agingImmunologyClinical uses of mesenchymal stem cellsBiologyStem cellStem cell transplantation for articular cartilage repair
researchProduct

Umbilical cord versus bone marrow-derived mesenchymal stromal cells.

2012

incetheplacentaisapostnatal tissue and discarded asmedical waste, harvesting stem cells from this organrepresents a noninvasive and ethically conductive proce-dure. Perinatal stem cells isolated from amnion, chorion,umbilical cord, and cord blood are increasingly viewedas reliable sources of mesenchymal stromal cells (MSCs)alternative to bone marrow-derived ones (BM-MSCs),which are currently the most commonly used in clinicalapplications [1–5].Perinatal stem cells are a bridge between embryonic stemcells (ESCs) and adult stem cells (such as BM-MSCs). Theyshare many characteristics of both cells [1,6]. Considering thestructural complexity of the term ‘‘placenta,’’ we have fo-cused our attent…

Cellular differentiationCellsBone Marrow CellsBiologyCell therapyHumansSettore BIO/13 - BIOLOGIA APPLICATAWharton JellyCell ShapeCells CulturedStem cell transplantation for articular cartilage repairCell ProliferationCulturedMesenchymal Stromal CellsSettore BIO/16 - Anatomia UmanaMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationCell BiologyHematologyBone Marrow Cells; Cell Differentiation; Cell Proliferation; Cell Shape; Cells Cultured; Humans; Mesenchymal Stromal Cells; Stem Cell Research; Wharton JellyStem Cell ResearchEmbryonic stem cellCell biologyCord bloodImmunologymesenchymal stem cells differentiation markers umbilical cord wharton's jelly bone marrow adipose tissueStem cellDevelopmental BiologyAdult stem cell
researchProduct

Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and c…

2013

Rheumatoid arthritis and osteoarthritis are the main diseases that imply an inflammatory process at the joints involving the articular cartilage. Recently, mesenchymal stem cells (MSCs) derived from perinatal tissues were considered good candidates for cellular therapy of musculoskeletal and orthopaedic diseases, since they can differentiate into multiple cell types and are an easily accessible cellular source. Therefore, several protocols exist on the differentiation of mesenchymal stem cells of different origins into osteoblasts and chondrocytes. Another key feature of MSCs is their capacity to modulate the immune system responses in vitro and in vivo. This may have critical outcomes in d…

Cellular differentiationImmune modulationBlotting WesternCell- and Tissue-Based TherapyMedicine (miscellaneous)Clinical uses of mesenchymal stem cellsBiologyReal-Time Polymerase Chain ReactionRegenerative medicineOsteocytesCell therapyImmunoenzyme TechniquesImmunomodulationChondrocytesImmune privilegeOsteogenic differentiationWharton's jellyAdipocytesHumansRNA MessengerWharton JellyTissue repairUmbilical cordCells CulturedStem cell transplantation for articular cartilage repairMesenchymal stem cellChondrogenic differentiationSettore BIO/16 - Anatomia UmanaReverse Transcriptase Polymerase Chain ReactionWharton's jellyMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsGeneral MedicineCell biologyImmunologyAdipogenic differentiationRegenerative medicineCurrent stem cell researchtherapy
researchProduct

New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity.

2010

In recent years, human mesenchymal stem cells (MSC) have been extensively studied. Their key characteristics of long-term self-renewal and a capacity to differentiate into diverse mature tissues favour their use in regenerative medicine applications. Stem cells can be found in embryonic and extra-embryonic tissues as well as in adult organs. Several reports indicate that cells of Wharton's jelly (WJ), the main component of umbilical cord extracellular matrix, are multipotent stem cells, expressing markers of bone marrow mesenchymal stem cells (BM-MSC), and giving rise to different cellular types of both connective and nervous tissues. Wharton's jelly mesenchymal stem cells (WJ-MSC) express …

Clinical uses of mesenchymal stem cellsBone Marrow CellsBiologyRegenerative MedicineUmbilical CordImmunomodulationMesodermWharton's jellyAnimalsHumansCell LineageStem cell transplantation for articular cartilage repairCell ProliferationSettore BIO/16 - Anatomia UmanaMultipotent Stem CellsMesenchymal stem cellEndodermCell DifferentiationMesenchymal Stem CellsCell BiologyHematologyCell biologyExtracellular MatrixMultipotent Stem CellAmniotic epithelial cellsImmunologyHepatocytesmesenchymal stem cells umbilical cord Wharton's jelly differentiation hepatocyteStem cellBiomarkersDevelopmental BiologyAdult stem cellStem cells and development
researchProduct

Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adul…

2010

Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in …

Graft RejectionCancer ResearchCellular differentiationCell Culture TechniquesClinical uses of mesenchymal stem cellsBiologyMesenchymal Stem Cell TransplantationRegenerative medicineUmbilical CordImmunomodulationMesenchymal stem cells Umbilical cord Wharton’s jelly Type 1 diabetes Beta cells Differentiation markers Pancreas development Inflammation Immune modulation HypoimmunogenicityInsulin-Secreting CellsWharton's jellyAnimalsHumansRegenerationEmbryonic Stem CellsSettore BIO/16 - Anatomia UmanaRegeneration (biology)Mesenchymal stem cellCell DifferentiationMesenchymal Stem CellsCell BiologyAntigens DifferentiationTransplantationAdult Stem CellsDiabetes Mellitus Type 1Adipose TissueImmunologyCancer researchCord Blood Stem Cell TransplantationStem cellStem Cell Reviews and Reports
researchProduct

Human Wharton's jelly-derived mesenchymal stem cells express several immunomodulatory molecules both in their naïve state and hepatocyte-like differe…

2011

Wharton’s jelly (WJ), the main constituent of umbilical cord, is a reliable source of mesenchymal stem cells (MSC). WJ-MSC show unique ability in crossing lineage borders. As other extraembryonic mesenchymal populations (placenta and amnionderived cells), WJ-MSC express several immunomodulatory molecules, essential during the initial phases of human development. Indeed, our recent work pointed out the expression of non-classical HLA molecules as HLA-G in such cells, together with a favorable combination of B7 costimulators. Very few data in literature suggest that some of the immune features of the naïve cells are maintained after performing differentiation. The aim of this work was extendi…

Hepatocyte differentiationSettore BIO/16 - Anatomia UmanaImmunogenicityMesenchymal stem cellImmune regulationObstetrics and GynecologyClinical uses of mesenchymal stem cellsBiologyUmbilical cordCell biologymedicine.anatomical_structureReproductive MedicineHepatocyteImmunologyWharton's jellymedicineWharton's jelly mesenchymal stem cells umbilical cord hepatocyte differentiation markers immunogenicity immune regulationDevelopmental BiologyPlacenta
researchProduct